3.3.62 \(\int \frac {x^{7/2} (A+B x^2)}{(b x^2+c x^4)^{3/2}} \, dx\) [262]

Optimal. Leaf size=299 \[ -\frac {(b B-A c) x^{5/2}}{b c \sqrt {b x^2+c x^4}}+\frac {(3 b B-A c) x^{3/2} \left (b+c x^2\right )}{b c^{3/2} \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {b x^2+c x^4}}-\frac {(3 b B-A c) x \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {\frac {b+c x^2}{\left (\sqrt {b}+\sqrt {c} x\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )|\frac {1}{2}\right )}{b^{3/4} c^{7/4} \sqrt {b x^2+c x^4}}+\frac {(3 b B-A c) x \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {\frac {b+c x^2}{\left (\sqrt {b}+\sqrt {c} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )|\frac {1}{2}\right )}{2 b^{3/4} c^{7/4} \sqrt {b x^2+c x^4}} \]

[Out]

-(-A*c+B*b)*x^(5/2)/b/c/(c*x^4+b*x^2)^(1/2)+(-A*c+3*B*b)*x^(3/2)*(c*x^2+b)/b/c^(3/2)/(b^(1/2)+x*c^(1/2))/(c*x^
4+b*x^2)^(1/2)-(-A*c+3*B*b)*x*(cos(2*arctan(c^(1/4)*x^(1/2)/b^(1/4)))^2)^(1/2)/cos(2*arctan(c^(1/4)*x^(1/2)/b^
(1/4)))*EllipticE(sin(2*arctan(c^(1/4)*x^(1/2)/b^(1/4))),1/2*2^(1/2))*(b^(1/2)+x*c^(1/2))*((c*x^2+b)/(b^(1/2)+
x*c^(1/2))^2)^(1/2)/b^(3/4)/c^(7/4)/(c*x^4+b*x^2)^(1/2)+1/2*(-A*c+3*B*b)*x*(cos(2*arctan(c^(1/4)*x^(1/2)/b^(1/
4)))^2)^(1/2)/cos(2*arctan(c^(1/4)*x^(1/2)/b^(1/4)))*EllipticF(sin(2*arctan(c^(1/4)*x^(1/2)/b^(1/4))),1/2*2^(1
/2))*(b^(1/2)+x*c^(1/2))*((c*x^2+b)/(b^(1/2)+x*c^(1/2))^2)^(1/2)/b^(3/4)/c^(7/4)/(c*x^4+b*x^2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.23, antiderivative size = 299, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.214, Rules used = {2062, 2057, 335, 311, 226, 1210} \begin {gather*} \frac {x \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {\frac {b+c x^2}{\left (\sqrt {b}+\sqrt {c} x\right )^2}} (3 b B-A c) F\left (2 \text {ArcTan}\left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )|\frac {1}{2}\right )}{2 b^{3/4} c^{7/4} \sqrt {b x^2+c x^4}}-\frac {x \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {\frac {b+c x^2}{\left (\sqrt {b}+\sqrt {c} x\right )^2}} (3 b B-A c) E\left (2 \text {ArcTan}\left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )|\frac {1}{2}\right )}{b^{3/4} c^{7/4} \sqrt {b x^2+c x^4}}+\frac {x^{3/2} \left (b+c x^2\right ) (3 b B-A c)}{b c^{3/2} \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {b x^2+c x^4}}-\frac {x^{5/2} (b B-A c)}{b c \sqrt {b x^2+c x^4}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(x^(7/2)*(A + B*x^2))/(b*x^2 + c*x^4)^(3/2),x]

[Out]

-(((b*B - A*c)*x^(5/2))/(b*c*Sqrt[b*x^2 + c*x^4])) + ((3*b*B - A*c)*x^(3/2)*(b + c*x^2))/(b*c^(3/2)*(Sqrt[b] +
 Sqrt[c]*x)*Sqrt[b*x^2 + c*x^4]) - ((3*b*B - A*c)*x*(Sqrt[b] + Sqrt[c]*x)*Sqrt[(b + c*x^2)/(Sqrt[b] + Sqrt[c]*
x)^2]*EllipticE[2*ArcTan[(c^(1/4)*Sqrt[x])/b^(1/4)], 1/2])/(b^(3/4)*c^(7/4)*Sqrt[b*x^2 + c*x^4]) + ((3*b*B - A
*c)*x*(Sqrt[b] + Sqrt[c]*x)*Sqrt[(b + c*x^2)/(Sqrt[b] + Sqrt[c]*x)^2]*EllipticF[2*ArcTan[(c^(1/4)*Sqrt[x])/b^(
1/4)], 1/2])/(2*b^(3/4)*c^(7/4)*Sqrt[b*x^2 + c*x^4])

Rule 226

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))*EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 311

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 2]}, Dist[1/q, Int[1/Sqrt[a + b*x^4], x],
 x] - Dist[1/q, Int[(1 - q*x^2)/Sqrt[a + b*x^4], x], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 1210

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a +
 c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d*(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]/(q*Sqrt[a + c*x^4
]))*EllipticE[2*ArcTan[q*x], 1/2], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rule 2057

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Dist[c^IntPart[m]*(c*x)^FracPa
rt[m]*((a*x^j + b*x^n)^FracPart[p]/(x^(FracPart[m] + j*FracPart[p])*(a + b*x^(n - j))^FracPart[p])), Int[x^(m
+ j*p)*(a + b*x^(n - j))^p, x], x] /; FreeQ[{a, b, c, j, m, n, p}, x] &&  !IntegerQ[p] && NeQ[n, j] && PosQ[n
- j]

Rule 2062

Int[((e_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(jn_.))^(p_)*((c_) + (d_.)*(x_)^(n_.)), x_Symbol] :> Sim
p[(-e^(j - 1))*(b*c - a*d)*(e*x)^(m - j + 1)*((a*x^j + b*x^(j + n))^(p + 1)/(a*b*n*(p + 1))), x] - Dist[e^j*((
a*d*(m + j*p + 1) - b*c*(m + n + p*(j + n) + 1))/(a*b*n*(p + 1))), Int[(e*x)^(m - j)*(a*x^j + b*x^(j + n))^(p
+ 1), x], x] /; FreeQ[{a, b, c, d, e, j, m, n}, x] && EqQ[jn, j + n] &&  !IntegerQ[p] && NeQ[b*c - a*d, 0] &&
LtQ[p, -1] && GtQ[j, 0] && LeQ[j, m] && (GtQ[e, 0] || IntegerQ[j])

Rubi steps

\begin {align*} \int \frac {x^{7/2} \left (A+B x^2\right )}{\left (b x^2+c x^4\right )^{3/2}} \, dx &=-\frac {(b B-A c) x^{5/2}}{b c \sqrt {b x^2+c x^4}}+\frac {\left (\frac {3 b B}{2}-\frac {A c}{2}\right ) \int \frac {x^{3/2}}{\sqrt {b x^2+c x^4}} \, dx}{b c}\\ &=-\frac {(b B-A c) x^{5/2}}{b c \sqrt {b x^2+c x^4}}+\frac {\left (\left (\frac {3 b B}{2}-\frac {A c}{2}\right ) x \sqrt {b+c x^2}\right ) \int \frac {\sqrt {x}}{\sqrt {b+c x^2}} \, dx}{b c \sqrt {b x^2+c x^4}}\\ &=-\frac {(b B-A c) x^{5/2}}{b c \sqrt {b x^2+c x^4}}+\frac {\left (2 \left (\frac {3 b B}{2}-\frac {A c}{2}\right ) x \sqrt {b+c x^2}\right ) \text {Subst}\left (\int \frac {x^2}{\sqrt {b+c x^4}} \, dx,x,\sqrt {x}\right )}{b c \sqrt {b x^2+c x^4}}\\ &=-\frac {(b B-A c) x^{5/2}}{b c \sqrt {b x^2+c x^4}}+\frac {\left (2 \left (\frac {3 b B}{2}-\frac {A c}{2}\right ) x \sqrt {b+c x^2}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {b+c x^4}} \, dx,x,\sqrt {x}\right )}{\sqrt {b} c^{3/2} \sqrt {b x^2+c x^4}}-\frac {\left (2 \left (\frac {3 b B}{2}-\frac {A c}{2}\right ) x \sqrt {b+c x^2}\right ) \text {Subst}\left (\int \frac {1-\frac {\sqrt {c} x^2}{\sqrt {b}}}{\sqrt {b+c x^4}} \, dx,x,\sqrt {x}\right )}{\sqrt {b} c^{3/2} \sqrt {b x^2+c x^4}}\\ &=-\frac {(b B-A c) x^{5/2}}{b c \sqrt {b x^2+c x^4}}+\frac {(3 b B-A c) x^{3/2} \left (b+c x^2\right )}{b c^{3/2} \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {b x^2+c x^4}}-\frac {(3 b B-A c) x \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {\frac {b+c x^2}{\left (\sqrt {b}+\sqrt {c} x\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )|\frac {1}{2}\right )}{b^{3/4} c^{7/4} \sqrt {b x^2+c x^4}}+\frac {(3 b B-A c) x \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {\frac {b+c x^2}{\left (\sqrt {b}+\sqrt {c} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )|\frac {1}{2}\right )}{2 b^{3/4} c^{7/4} \sqrt {b x^2+c x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 10.07, size = 78, normalized size = 0.26 \begin {gather*} -\frac {2 x^{5/2} \left (-3 b B+(3 b B-A c) \sqrt {1+\frac {c x^2}{b}} \, _2F_1\left (\frac {3}{4},\frac {3}{2};\frac {7}{4};-\frac {c x^2}{b}\right )\right )}{3 b c \sqrt {x^2 \left (b+c x^2\right )}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(x^(7/2)*(A + B*x^2))/(b*x^2 + c*x^4)^(3/2),x]

[Out]

(-2*x^(5/2)*(-3*b*B + (3*b*B - A*c)*Sqrt[1 + (c*x^2)/b]*Hypergeometric2F1[3/4, 3/2, 7/4, -((c*x^2)/b)]))/(3*b*
c*Sqrt[x^2*(b + c*x^2)])

________________________________________________________________________________________

Maple [A]
time = 0.38, size = 388, normalized size = 1.30

method result size
default \(-\frac {x^{\frac {5}{2}} \left (c \,x^{2}+b \right ) \left (2 A \EllipticE \left (\sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}, \frac {\sqrt {2}}{2}\right ) \sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {2}\, \sqrt {\frac {-c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {-\frac {x c}{\sqrt {-b c}}}\, b c -A \EllipticF \left (\sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}, \frac {\sqrt {2}}{2}\right ) \sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {2}\, \sqrt {\frac {-c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {-\frac {x c}{\sqrt {-b c}}}\, b c -6 B \EllipticE \left (\sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}, \frac {\sqrt {2}}{2}\right ) \sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {2}\, \sqrt {\frac {-c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {-\frac {x c}{\sqrt {-b c}}}\, b^{2}+3 B \EllipticF \left (\sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}, \frac {\sqrt {2}}{2}\right ) \sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {2}\, \sqrt {\frac {-c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {-\frac {x c}{\sqrt {-b c}}}\, b^{2}-2 A \,c^{2} x^{2}+2 b B \,x^{2} c \right )}{2 \left (x^{4} c +b \,x^{2}\right )^{\frac {3}{2}} c^{2} b}\) \(388\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(7/2)*(B*x^2+A)/(c*x^4+b*x^2)^(3/2),x,method=_RETURNVERBOSE)

[Out]

-1/2/(c*x^4+b*x^2)^(3/2)*x^(5/2)*(c*x^2+b)*(2*A*EllipticE(((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2),1/2*2^(1/2))
*((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*2^(1/2)*((-c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*(-x*c/(-b*c)^(1/2))^
(1/2)*b*c-A*EllipticF(((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2),1/2*2^(1/2))*((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(
1/2)*2^(1/2)*((-c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*(-x*c/(-b*c)^(1/2))^(1/2)*b*c-6*B*EllipticE(((c*x+(-b*c)
^(1/2))/(-b*c)^(1/2))^(1/2),1/2*2^(1/2))*((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*2^(1/2)*((-c*x+(-b*c)^(1/2))/
(-b*c)^(1/2))^(1/2)*(-x*c/(-b*c)^(1/2))^(1/2)*b^2+3*B*EllipticF(((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2),1/2*2^
(1/2))*((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*2^(1/2)*((-c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*(-x*c/(-b*c)^(
1/2))^(1/2)*b^2-2*A*c^2*x^2+2*b*B*x^2*c)/c^2/b

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(7/2)*(B*x^2+A)/(c*x^4+b*x^2)^(3/2),x, algorithm="maxima")

[Out]

integrate((B*x^2 + A)*x^(7/2)/(c*x^4 + b*x^2)^(3/2), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.56, size = 98, normalized size = 0.33 \begin {gather*} -\frac {{\left (3 \, B b^{2} - A b c + {\left (3 \, B b c - A c^{2}\right )} x^{2}\right )} \sqrt {c} {\rm weierstrassZeta}\left (-\frac {4 \, b}{c}, 0, {\rm weierstrassPInverse}\left (-\frac {4 \, b}{c}, 0, x\right )\right ) + \sqrt {c x^{4} + b x^{2}} {\left (B b c - A c^{2}\right )} \sqrt {x}}{b c^{3} x^{2} + b^{2} c^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(7/2)*(B*x^2+A)/(c*x^4+b*x^2)^(3/2),x, algorithm="fricas")

[Out]

-((3*B*b^2 - A*b*c + (3*B*b*c - A*c^2)*x^2)*sqrt(c)*weierstrassZeta(-4*b/c, 0, weierstrassPInverse(-4*b/c, 0,
x)) + sqrt(c*x^4 + b*x^2)*(B*b*c - A*c^2)*sqrt(x))/(b*c^3*x^2 + b^2*c^2)

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**(7/2)*(B*x**2+A)/(c*x**4+b*x**2)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(7/2)*(B*x^2+A)/(c*x^4+b*x^2)^(3/2),x, algorithm="giac")

[Out]

integrate((B*x^2 + A)*x^(7/2)/(c*x^4 + b*x^2)^(3/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {x^{7/2}\,\left (B\,x^2+A\right )}{{\left (c\,x^4+b\,x^2\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^(7/2)*(A + B*x^2))/(b*x^2 + c*x^4)^(3/2),x)

[Out]

int((x^(7/2)*(A + B*x^2))/(b*x^2 + c*x^4)^(3/2), x)

________________________________________________________________________________________